Skip to contents

With numeric values in a vector, we can perform number-based formatting so that the values are rendered to a character vector with some level of precision. The following major options are available:

  • decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice of the decimal symbol

  • digit grouping separators: options to enable/disable digit separators and provide a choice of separator symbol

  • scaling: we can choose to scale targeted values by a multiplier value

  • large-number suffixing: larger figures (thousands, millions, etc.) can be autoscaled and decorated with the appropriate suffixes

  • pattern: option to use a text pattern for decoration of the formatted values

  • locale-based formatting: providing a locale ID will result in number formatting specific to the chosen locale

Usage

vec_fmt_number(
  x,
  decimals = 2,
  n_sigfig = NULL,
  drop_trailing_zeros = FALSE,
  drop_trailing_dec_mark = TRUE,
  use_seps = TRUE,
  accounting = FALSE,
  scale_by = 1,
  suffixing = FALSE,
  pattern = "{x}",
  sep_mark = ",",
  dec_mark = ".",
  force_sign = FALSE,
  locale = NULL,
  output = c("auto", "plain", "html", "latex", "rtf", "word")
)

Arguments

x

The input vector

vector(numeric|integer) // required

This is the input vector that will undergo transformation to a character vector of the same length. Values within the vector will be formatted.

decimals

Number of decimal places

scalar<numeric|integer>(val>=0) // default: 2

This corresponds to the exact number of decimal places to use. A value such as 2.34 can, for example, be formatted with 0 decimal places and it would result in "2". With 4 decimal places, the formatted value becomes "2.3400". The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you always need decimals = 0, the fmt_integer() function should be considered.

n_sigfig

Number of significant figures

scalar<numeric|integer>(val>=1) // default: NULL (optional)

A option to format numbers to n significant figures. By default, this is NULL and thus number values will be formatted according to the number of decimal places set via decimals. If opting to format according to the rules of significant figures, n_sigfig must be a number greater than or equal to 1. Any values passed to the decimals and drop_trailing_zeros arguments will be ignored.

drop_trailing_zeros

Drop any trailing zeros

scalar<logical> // default: FALSE

A logical value that allows for removal of trailing zeros (those redundant zeros after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark

scalar<logical> // default: TRUE

A logical value that determines whether decimal marks should always appear even if there are no decimal digits to display after formatting (e.g., 23 becomes 23. if FALSE). By default trailing decimal marks are not shown.

use_seps

Use digit group separators

scalar<logical> // default: TRUE

An option to use digit group separators. The type of digit group separator is set by sep_mark and overridden if a locale ID is provided to locale. This setting is TRUE by default.

accounting

Use accounting style

scalar<logical> // default: FALSE

An option to use accounting style for values. Normally, negative values will be shown with a minus sign but using accounting style will instead put any negative values in parentheses.

scale_by

Scale values by a fixed multiplier

scalar<numeric|integer> // default: 1

All numeric values will be multiplied by the scale_by value before undergoing formatting. Since the default value is 1, no values will be changed unless a different multiplier value is supplied. This value will be ignored if using any of the suffixing options (i.e., where suffixing is not set to FALSE).

suffixing

Specification for large-number suffixing

scalar<logical>|vector<character> // default: FALSE

The suffixing option allows us to scale and apply suffixes to larger numbers (e.g., 1924000 can be transformed to 1.92M). This option can accept a logical value, where FALSE (the default) will not perform this transformation and TRUE will apply thousands ("K"), millions ("M"), billions ("B"), and trillions ("T") suffixes after automatic value scaling.

We can alternatively provide a character vector that serves as a specification for which symbols are to used for each of the value ranges. These preferred symbols will replace the defaults (e.g., c("k", "Ml", "Bn", "Tr") replaces "K", "M", "B", and "T").

Including NA values in the vector will ensure that the particular range will either not be included in the transformation (e.g., c(NA, "M", "B", "T") won't modify numbers at all in the thousands range) or the range will inherit a previous suffix (e.g., with c("K", "M", NA, "T"), all numbers in the range of millions and billions will be in terms of millions).

Any use of suffixing (where it is not set expressly as FALSE) means that any value provided to scale_by will be ignored.

pattern

Specification of the formatting pattern

scalar<character> // default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The formatted value is represented by the {x} (which can be used multiple times, if needed) and all other characters will be interpreted as string literals.

sep_mark

Separator mark for digit grouping

scalar<character> // default: ","

The string to use as a separator between groups of digits. For example, using sep_mark = "," with a value of 1000 would result in a formatted value of "1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark

Decimal mark

scalar<character> // default: "."

The string to be used as the decimal mark. For example, using dec_mark = "," with the value 0.152 would result in a formatted value of "0,152"). This argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign

Forcing the display of a positive sign

scalar<logical> // default: FALSE

Should the positive sign be shown for positive values (effectively showing a sign for all values except zero)? If so, use TRUE for this option. The default is FALSE, where only negative numbers will display a minus sign. This option is disregarded when using accounting notation with accounting = TRUE.

locale

Locale identifier

scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the locale's rules. Examples include "en" for English (United States) and "fr" for French (France). We can use the info_locales() function as a useful reference for all of the locales that are supported. A locale ID can be also set in the initial gt() function call (where it would be used automatically by any function with a locale argument) but a locale value provided here will override that global locale.

output

Output format

singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"

The output style of the resulting character vector. This can either be "auto" (the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering (i.e., Quarto or R Markdown), the "auto" option will choose the correct output value

Value

A character vector.

Examples

Let's create a numeric vector for the next few examples:

num_vals <- c(5.2, 8.65, 0, -5.3, NA)

Using vec_fmt_number() with the default options will create a character vector where the numeric values have two decimal places and NA values will render as "NA". Also, the rendering context will be autodetected unless specified in the output argument (here, it is of the "plain" output type).

vec_fmt_number(num_vals)

#> [1] "5.20" "8.65" "0.00" "-5.30" "NA"

We can change the decimal mark to a comma, and we have to be sure to change the digit separator mark from the default comma to something else (a period works here):

vec_fmt_number(num_vals, sep_mark = ".", dec_mark = ",")

#> [1] "5,20" "8,65" "0,00" "-5,30" "NA"

If we are formatting for a different locale, we could supply the locale ID and let gt handle these locale-specific formatting options:

vec_fmt_number(num_vals, locale = "fr")

#> [1] "5,20" "8,65" "0,00" "-5,30" "NA"

There are many options for formatting values. Perhaps you need to have explicit positive and negative signs? Use force_sign = TRUE for that.

vec_fmt_number(num_vals, force_sign = TRUE)

#> [1] "+5.20" "+8.65" "0.00" "-5.30" "NA"

Those trailing zeros past the decimal mark can be stripped out by using the drop_trailing_zeros option.

vec_fmt_number(num_vals, drop_trailing_zeros = TRUE)

#> [1] "5.2" "8.65" "0" "-5.3" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that NA values won't have the pattern applied.

vec_fmt_number(num_vals, pattern = "`{x}`")

#> [1] "`5.20`" "`8.65`" "`0.00`" "`-5.30`" "NA"

Function ID

15-1

Function Introduced

v0.7.0 (Aug 25, 2022)