Wherever there is numerical data that are very small in value, replacement
text may be better for explanatory purposes. sub_small_vals()
allows for
this replacement through specification of a threshold
, a small_pattern
,
and the sign of the values to be considered. The substitution will occur for
those values found to be between 0
and the threshold value. This is
possible for small positive and small negative values (this can be explicitly
set by the sign
option). Note that the interval does not include the 0
or
the threshold
value. Should you need to include zero values, use
sub_zero()
.
Usage
sub_small_vals(
data,
columns = everything(),
rows = everything(),
threshold = 0.01,
small_pattern = if (sign == "+") "<{x}" else md("<*abs*(-{x})"),
sign = "+"
)
Arguments
- data
The gt table data object
obj:<gt_tbl>
// requiredThis is the gt table object that is commonly created through use of the
gt()
function.- columns
Columns to target
<column-targeting expression>
// default:everything()
The columns to which substitution operations are constrained. Can either be a series of column names provided in
c()
, a vector of column indices, or a select helper function (e.g.starts_with()
,ends_with()
,contains()
,matches()
,num_range()
, andeverything()
).- rows
Rows to target
<row-targeting expression>
// default:everything()
In conjunction with
columns
, we can specify which of their rows should form a constraint for targeting operations. The defaulteverything()
results in all rows incolumns
being formatted. Alternatively, we can supply a vector of row IDs withinc()
, a vector of row indices, or a select helper function (e.g.starts_with()
,ends_with()
,contains()
,matches()
,num_range()
, andeverything()
). We can also use expressions to filter down to the rows we need (e.g.,[colname_1] > 100 & [colname_2] < 50
).- threshold
Threshold value
scalar<numeric|integer>
// default:0.01
The threshold value with which values should be considered small enough for replacement.
- small_pattern
Pattern specification for small values
scalar<character>
// default:if (sign == "+") "<{x}" else md("<*abs*(-{x})")
The pattern text to be used in place of the suitably small values in the rendered table.
- sign
Consider positive or negative values?
scalar<character>
// default:"+"
The sign of the numbers to be considered in the replacement. By default, we only consider positive values (
"+"
). The other option ("-"
) can be used to consider only negative values.
Examples
Let's generate a simple, single-column tibble that contains an assortment of values that could potentially undergo some substitution.
tbl <- dplyr::tibble(num = c(10^(-4:2), 0, NA))
tbl
#> # A tibble: 9 x 1
#> num
#> <dbl>
#> 1 0.0001
#> 2 0.001
#> 3 0.01
#> 4 0.1
#> 5 1
#> 6 10
#> 7 100
#> 8 0
#> 9 NA
The tbl
contains a variety of smaller numbers and some might be small
enough to reformat with a threshold value. With sub_small_vals()
we can
do just that:
tbl |>
gt() |>
fmt_number(columns = num) |>
sub_small_vals()
Small and negative values can also be handled but they are handled specially
by the sign
parameter. Setting that to "-"
will format only the small,
negative values.
tbl |>
dplyr::mutate(num = -num) |>
gt() |>
fmt_number(columns = num) |>
sub_small_vals(sign = "-")
You don't have to settle with the default threshold
value or the default
replacement pattern (in small_pattern
). This can be changed and the
"{x}"
in small_pattern
(which uses the threshold
value) can even be
omitted.
tbl |>
gt() |>
fmt_number(columns = num) |>
sub_small_vals(
threshold = 0.0005,
small_pattern = "smol"
)
See also
Other data formatting functions:
data_color()
,
fmt()
,
fmt_auto()
,
fmt_bins()
,
fmt_bytes()
,
fmt_chem()
,
fmt_country()
,
fmt_currency()
,
fmt_date()
,
fmt_datetime()
,
fmt_duration()
,
fmt_email()
,
fmt_engineering()
,
fmt_flag()
,
fmt_fraction()
,
fmt_icon()
,
fmt_image()
,
fmt_index()
,
fmt_integer()
,
fmt_markdown()
,
fmt_number()
,
fmt_partsper()
,
fmt_passthrough()
,
fmt_percent()
,
fmt_roman()
,
fmt_scientific()
,
fmt_spelled_num()
,
fmt_tf()
,
fmt_time()
,
fmt_units()
,
fmt_url()
,
sub_large_vals()
,
sub_missing()
,
sub_values()
,
sub_zero()